Contact Us

Proposal Vetting case study for SXSW

AI Solution

No items found.

industry

Proposal Vetting

Challenge

SXSW receives thousands of conference proposals every summer, each of which must be reviewed and graded by internal staff.

Solution

KUNGFU.AI designed and trained a deep learning NLP model to automatically review and predict the grade of conference proposals. The model examines multiple features for each proposal including, title, description, track name, target audience description, speaker names, emails, and Twitter follower counts.

Outcome

Streamlined the review process by rank ordering proposals based on the model’s predictions — saving time and ensuring the highest quality content is scheduled first.

NLP
SXSW

Proposal Vetting

Challenge

SXSW receives thousands of conference proposals every summer, each of which must be reviewed and graded by internal staff.

Solution

KUNGFU.AI designed and trained a deep learning NLP model to automatically review and predict the grade of conference proposals. The model examines multiple features for each proposal including, title, description, track name, target audience description, speaker names, emails, and Twitter follower counts.

Outcome

Streamlined the review process by rank ordering proposals based on the model’s predictions — saving time and ensuring the highest quality content is scheduled first.

NLP
SXSW

Download the Case Study

More case studies
The Waste Management Early Alert Rear Safety Device
Object Detection

Waste Management Early Alert Rear Safety Device

Realty Austin Case Study cover
Recommendation Modeling

Case Study: Realty Austin

Realty Austin needed to improve the available housing recommendations sent to its customers via email. Find out how KUNGFU.AI created the system that generated significantly improved email click-through rates.
Case Study: Natural Language Processing for Audio Search, a broadcaster records a podcast that will then be indexed and archived with NLP
Natural Language Processing (NLP)

NLP for Audio Search